sexta-feira, 10 de dezembro de 2010

É possível eleger os cinco papers mais importantes para a Biologia em 2010?

Dezembro é mês de: retrospectivas, linhas do tempo, eleições das "melhores tecnologias" do ano, "achados científicos" mais importantes, e por aí vai.

Desde que organizei no ano passado, para o SBI na Rede, uma lista dos artigos científicos imunológicos publicados em 2009 que mereceram destaque, contribuíram, ou levaram a uma reflexão importante, nunca mais me esqueci do que o professor Nelson Vaz na época me sugeriu:

"Foi muito boa a iniciativa de pedir a comunidade que indique trabalhos relevantes em 2009. Mas isto ainda pode ter um sabor meio competitivo: este é 'o paper', assim como Lula é 'o cara'. Seria possível pedir sugestões sobre os textos que marcaram época no aprendizado de imunologia de cada um, algo que as principais revistas já fazem com as seções de 'fronteira' ou , no polo oposto, com pequenas revisões históricas. Agora em 2008, por exemplo, a literatura imunológica, principalmente a australiana se encheu de referências à teoria clonal, que maturou há 50 anos. Isto seria bom nesta época em que a imunologia, no estudo da imunidade 'inata', está novamente virando imunoquímica, como na primeira metade do sec XX".

Agora leiam a lista dos "top 5 papers da biologia em 2010", publicada ontem pela revista The Scientist, com a fala do professor Nelson Vaz como pano de fundo.

This was a year of headline science news: the first cell with a synthetic genome, a new human-Neanderthal ancestor and, recently, alien life. Oh, wait...that was just bacteria growing on arsenic. Never mind.

But, according to scientists, this year's most important papers were not those that made the front page of international newspapers, but the quiet and persistent investigations of the molecular foundations of life. From the long-awaited structure of a bacterial enzyme to how Salmonella grows in the gut, presented here in ascending order are the five most important papers in biology of 2010, as reviewed and ranked by members of the Faculty of 1000.

5. Mechanotransduction proteins found

The paper: B. Coste, et al., "Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels," Science, 330:55-60, 2010.

A new family of proteins, characterized in a mouse cell line, shines new light on the previously mysterious molecular basis of mechanosensation in mammals. Called Piezos, these proteins have been identified as a critical molecular component in mechanically activated ion channels, which make possible several sensations, such as hearing, touch and pain.

4. Inflammation amplification

The paper: E. Boilard, et al., "Platelets amplify inflammation in arthritis via collagen-dependent microparticle production," Science, 327:580-83, 2010.

Researchers identify platelet "microparticles" -- tiny vesicles that bud from the membranes of activated platelets -- in the fluid of inflamed joints, which rarely contain blood. Importantly, depleting the microparticles using an antibody seemed to cure arthritis in mice.

The discovery, published in a January issue of Science, demonstrates the previously unappreciated role of platelets in inflammatory arthritis.


3. Complex I enzyme revealed

The paper: R.G. Efremov, et al., "The architecture of respiratory complex I," Nature, 465:441-5, 2010.

The long-awaited structure of a bacterial complex I enzyme -- first in line in the energy-producing respiratory chain -- reveals important mechanics of this ubiquitous protein. Specifically, the structure shows how the enzyme hustles electrons and protons across membranes.

The structure, published by Nature in May, is one of the largest protein membrane complexes ever solved.

2. How cilia talk

The paper: Q. Hu, et al., "A septin diffusion barrier at the base of the primary cilium maintains ciliary membrane protein distribution," Science, 329:436-39, 2010.

Primary (nonmotile) cilia -- sensory organelles in eukaryotic cells that act as antennae -- rely on membrane proteins to send and receive extracellular signals. New findings, published in the July issue of Science, show how cilia retain those membrane proteins -- a barrier at the base of cilia made up of proteins called septins.

Septins, originally identified as cell division mutants in yeast, localize at the base of the cilium where they maintain a barrier to control the localization of membrane proteins. The discovery solves the long-standing mystery of how signaling proteins are retained in the primary cilium.

One of the paper's corresponding authors, Elias Spiliotis, is this month's Scientist to Watch. You can read more about septins, and how they may also help protect yeast from the effects of aging, in our October cover story by Yves Barral.

1. Immune response feeds parasite

The paper: S.E. Winter, et al., "Gut inflammation provides a respiratory electron acceptor for Salmonella," Nature, 467:426-9, 2010.

Salmonella is able to out-compete resident gut microbes by deriving energy from the immune response that is supposed to combat the pathogen, according to a study published in September in Nature. Inflammation in a mouse gut generates a sulfur-based molecule called tetrathionate, which Salmonella uses during respiration for enhanced growth.

O link para o texto em seu local original está aqui. Não deixem de ler os comentários.

Nenhum comentário:

Postar um comentário